CSCI 210: Computer Architecture
Lecture 6: Number Systems

Stephen Checkoway
Oberlin College
Slides from Cynthia Taylor



Announcements

* Problem Set 1 due TONIGHT 11:59 p.m.

* Problem Set 2 available now

* Lab 1 available now and due Sunday, February 23



Why we need to learn binary (and other number
systems)

* Fundamental to how your computer works

— Will need a good grasp of binary to understand things like logical
operations

— Will need it a lot when we get to logic gates and how the CPU works
— Will need to translate to binary to work out examples

* Need to understand it to understand many things like network
protocols (IP addresses), bit masking, etc.



Positional Notation

* The meaning of a digit depends on its position in a number.

* A number, written as the sequence of digitsd_d,,...d,d,d, in
base b represents the value

d,*b"+d, ;*b"+...+d,*b?+d; *bl+d,*bO



Consider 101

* |n base 10, it represents the number 101 (one hundred one)

* In base 2, 101, =

* In base §, 101, =



. 26

. 51

. 126

. 130

101, = ?



.17

. 5

. 10

. =30

122_,=?



CS History: Negabinary

e Early Polish computers the BINEG (1959) and UMC-1 (1962)
used negative binary (base -2)

* Allowed for a natural representation of both negative and
positive numbers

* Problem: Math is more complicated



Binary: Base 2

* Used by computers

* A number, written as the sequence of digits d d, ,...d,d,d,
where d is in {0, 1}, represents the value

d,*2"+d *2"+...+d,*22+d; * 21 +dj * 2°



Binary to Decimal

e We haveb =2

10110, =



Decimal to Binary

Convert 115 to binary
We know
115=d 2"+ -+ +d;-21 + d,-2°
=2(d,-2"1+ .- +d;) + d,

115 is odd and 2(d -2"1 + .- +d,)isevensod,=1
Subtract 1, divide by 2, and repeat
57=d 2"+ .- +d,-2' +d,

= z(dn.zn-Z oo + dz) + d1



Convert 115 to Binary



Decimal to Binary

* Repeatedly divide by 2, recording the remainders

* The remainders form the binary digits of the number from the
least significant to the most significant

* Converting 25 to binary



3415=?;

. 010001

. 010010

. 100010

. 111110

. None of the above



Hexadecimal: Base 16

Like binary, but shorter!
Each digit is a “nibble”, or half a byte (4 bits)
Indicated by prefacing number with Ox (usually)

A number, written as the sequence of digitsd_d, ,...d,d,d,
where disin{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the

value

d *16"+d_,*16™ + ... +d, * 162 +d, * 161+ d, * 16°



Hexadecimal to binary

e Each hex digit corresponds directly to four binary digits

* 35AE, =



. 0010 0000 1100

. 0010 1111 0010

. 0010 0011 1100

. 1000 1101 1000

. None of the above

23C,. = ?,



Octal: Base 8

 Sometimes used to shorten binary
— Used to specify UNIX permissions (remember CS 2417?)

* A number, written as the sequence of digits d d, ,...d,d,d,
where disin {0,1,2,3,4,5,6,7}, represents the value

d,*8"+d,;*8"+..+d,*8+d; *8' +dy*8°



. 24

. 25

. 200

. 208

. None of the above



If every hex digit corresponds to 4 binary digits, how
many binary digits does an octal digit correspond
to?



Addition

* Use the same place-by-place algorithm that you use for
decimal numbers, but do the arithmetic in the appropriate
base



2A5C, . + 38BE, = ?

A. 586A
B. 631A
C. 6986

D. None of the above



How We Store Numbers

* Binary numbers in memory are stored using a finite, fixed
number of bits (typically 8, 16, 32, or 64)

— 8 bits = byte (usually and always in this class)

* Pad extra digits with leading Os

* A byte representing 4,, = 00000100



A byte (8 bits) can store nonnegatives values from O
up to
A. 127

B. 128
C. 255
D. 256

E. None of the above



Java
Abvyte is 8 bits
A charis 16 bits
A short is 16 bits
An int is 32 bits

A 1long is 64 bits



Rust

* bools are 1 byte, chars are 4 bytes

e Specify size in type for ints
— 18,116, 132, etc

e jsize or usize will be the size of an address on the architecture
it’s compiled for

— 32 bits on 32 bit systems, 64 bits on 64 bit systems



In C, an int is

A. 8 bits D. It depends
B. 16 bits E. None of the above

C. 32 bits



C specifies a minimum size for types

chars are 1 byte and must be at least 8 bits (but can be more!)
shorts and ints must be at least 16 bits

longs are at least 32 bits

long longs are at least 64 bits

sizeof(type) tells us how many bytes type is

1 = sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long) <
sizeof(long long)



So how do | know?

* Use sizeof(int) to check

* Or use C99 types like int1l6 torint32 t



Reading

* Next lecture: Negativesin binary
— Section 2.4

* Problem Set 1 due Today
* Lab 1 due a week from Monday



	Slide 1: CSCI 210: Computer Architecture Lecture 6: Number Systems
	Slide 2: Announcements
	Slide 3: Why we need to learn binary (and other number systems)
	Slide 4: Positional Notation
	Slide 5: Consider 101
	Slide 6: 1015 = ?
	Slide 7: 122-3=?
	Slide 8: CS History: Negabinary
	Slide 9: Binary: Base 2
	Slide 10: Binary to Decimal
	Slide 11: Decimal to Binary
	Slide 12: Convert 115 to Binary
	Slide 13: Decimal to Binary
	Slide 14: 3410=?2
	Slide 15: Hexadecimal: Base 16
	Slide 16: Hexadecimal to binary
	Slide 17: 23C16 = ?2
	Slide 18: Octal: Base 8
	Slide 19: 318 = ?10
	Slide 20: If every hex digit corresponds to 4 binary digits, how many binary digits does an octal digit correspond to?
	Slide 21: Addition
	Slide 22: 2A5C16 + 38BE16 = ?
	Slide 23: How We Store Numbers
	Slide 24: A byte (8 bits) can store nonnegatives values from 0 up to
	Slide 25: Java
	Slide 26: Rust
	Slide 27: In C, an int is
	Slide 28: C specifies a minimum size for types
	Slide 29: So how do I know?
	Slide 30: Reading

