
CSCI 210: Computer Architecture

Lecture 6: Number Systems

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

1

Announcements

• Problem Set 1 due TONIGHT 11:59 p.m.

• Problem Set 2 available now

• Lab 1 available now and due Sunday, February 23

Why we need to learn binary (and other number
systems)

• Fundamental to how your computer works

– Will need a good grasp of binary to understand things like logical
operations

– Will need it a lot when we get to logic gates and how the CPU works

– Will need to translate to binary to work out examples

• Need to understand it to understand many things like network
protocols (IP addresses), bit masking, etc.

Positional Notation

• The meaning of a digit depends on its position in a number.

• A number, written as the sequence of digits dndn-1…d2d1d0 in
base b represents the value

dn * bn + dn-1 * bn-1 + ... + d2 * b2 + d1 * b1 + d0 * b0

Consider 101

• In base 10, it represents the number 101 (one hundred one)

• In base 2, 1012 =

• In base 8, 1018 =

1015 = ?

A. 26

B. 51

C. 126

D. 130

122-3=?

A. 17

B. 5

C. 10

D. -30

CS History: Negabinary

• Early Polish computers the BINEG (1959) and UMC-1 (1962)
used negative binary (base -2)

• Allowed for a natural representation of both negative and
positive numbers

• Problem: Math is more complicated

Binary: Base 2

• Used by computers

• A number, written as the sequence of digits dndn-1…d2d1d0
where d is in {0, 1}, represents the value

dn * 2n + dn-1 * 2n-1 + ... + d2 * 22 + d1 * 21 + d0 * 20

Binary to Decimal

• We have b = 2

101102 =

Decimal to Binary

• Convert 115 to binary

• We know
115 = dn⋅2

n + ⋯ + d1⋅2
1 + d0⋅2

0

 = 2(dn⋅2
n-1 + ⋯ + d1) + d0

• 115 is odd and 2(dn⋅2
n-1 + ⋯ + d1) is even so d0 = 1

• Subtract 1, divide by 2, and repeat
57 = dn⋅2

n-1 + ⋯ + d2⋅2
1 + d1

 = 2(dn⋅2
n-2 + ⋯ + d2) + d1

Convert 115 to Binary

Decimal to Binary

• Repeatedly divide by 2, recording the remainders

• The remainders form the binary digits of the number from the
least significant to the most significant

• Converting 25 to binary

3410=?2

A. 010001

B. 010010

C. 100010

D. 111110

E. None of the above

Hexadecimal: Base 16

• Like binary, but shorter!

• Each digit is a “nibble”, or half a byte (4 bits)

• Indicated by prefacing number with 0x (usually)

• A number, written as the sequence of digits dndn-1…d2d1d0
where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the
value

dn * 16n + dn-1 * 16n-1 + ... + d2 * 162 + d1 * 161 + d0 * 160

Hexadecimal to binary

• Each hex digit corresponds directly to four binary digits

• 35AE16 =

23C16 = ?2

A. 0010 0000 1100

B. 0010 1111 0010

C. 0010 0011 1100

D. 1000 1101 1000

E. None of the above

Octal: Base 8

• Sometimes used to shorten binary

– Used to specify UNIX permissions (remember CS 241?)

• A number, written as the sequence of digits dndn-1…d2d1d0
where d is in {0,1,2,3,4,5,6,7}, represents the value

dn * 8n + dn-1 * 8n-1 + ... + d2 * 82 + d1 * 81 + d0 * 80

318 = ?10

A. 24

B. 25

C. 200

D. 208

E. None of the above

If every hex digit corresponds to 4 binary digits, how
many binary digits does an octal digit correspond

to?

A. 2

B. 3

C. 4

D. 5

Addition

• Use the same place-by-place algorithm that you use for
decimal numbers, but do the arithmetic in the appropriate
base

2A5C16 + 38BE16 = ?

A. 586A

B. 631A

C. 6986

D. None of the above

How We Store Numbers

• Binary numbers in memory are stored using a finite, fixed
number of bits (typically 8, 16, 32, or 64)

– 8 bits = byte (usually and always in this class)

• Pad extra digits with leading 0s

• A byte representing 410 = 00000100

A byte (8 bits) can store nonnegatives values from 0
up to

A. 127

B. 128

C. 255

D. 256

E. None of the above

Java

• A byte is 8 bits

• A char is 16 bits

• A short is 16 bits

• An int is 32 bits

• A long is 64 bits

Rust

• bools are 1 byte, chars are 4 bytes

• Specify size in type for ints

– i8, i16, i32, etc

• isize or usize will be the size of an address on the architecture
it’s compiled for

– 32 bits on 32 bit systems, 64 bits on 64 bit systems

In C, an int is

A. 8 bits

B. 16 bits

C. 32 bits

D. It depends

E. None of the above

C specifies a minimum size for types

• chars are 1 byte and must be at least 8 bits (but can be more!)

• shorts and ints must be at least 16 bits

• longs are at least 32 bits

• long longs are at least 64 bits

• sizeof(type) tells us how many bytes type is

• 1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤
sizeof(long long)

So how do I know?

• Use sizeof(int) to check

• Or use C99 types like int16_t or int32_t

Reading

• Next lecture: Negatives in binary

– Section 2.4

• Problem Set 1 due Today

• Lab 1 due a week from Monday

30

	Slide 1: CSCI 210: Computer Architecture Lecture 6: Number Systems
	Slide 2: Announcements
	Slide 3: Why we need to learn binary (and other number systems)
	Slide 4: Positional Notation
	Slide 5: Consider 101
	Slide 6: 1015 = ?
	Slide 7: 122-3=?
	Slide 8: CS History: Negabinary
	Slide 9: Binary: Base 2
	Slide 10: Binary to Decimal
	Slide 11: Decimal to Binary
	Slide 12: Convert 115 to Binary
	Slide 13: Decimal to Binary
	Slide 14: 3410=?2
	Slide 15: Hexadecimal: Base 16
	Slide 16: Hexadecimal to binary
	Slide 17: 23C16 = ?2
	Slide 18: Octal: Base 8
	Slide 19: 318 = ?10
	Slide 20: If every hex digit corresponds to 4 binary digits, how many binary digits does an octal digit correspond to?
	Slide 21: Addition
	Slide 22: 2A5C16 + 38BE16 = ?
	Slide 23: How We Store Numbers
	Slide 24: A byte (8 bits) can store nonnegatives values from 0 up to
	Slide 25: Java
	Slide 26: Rust
	Slide 27: In C, an int is
	Slide 28: C specifies a minimum size for types
	Slide 29: So how do I know?
	Slide 30: Reading

